Energy efficient of the production of the heat insulation based on the basalt super thin fibers


Keywords:
basalt fibers, basalt-bentonite products

Abstract

A brief historical overview of the creation of technology of the materials based on staple basalt fibers is given. The primary role in creating the technology of the Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, a number of academic and sectoral institutes is noted. Thermophysical characteristics of basalt fibrous materials and basalt-bentonite products are given. For fibrous materials based on BSTF, the following dependences are given: thermal conductivity coefficient, as a function of density and temperature; optimal density of the heat insulating canvas, characterized by a minimum coefficient of thermal conductivity, as a function of temperature; the compaction factor of the canvas, as a function of temperature. The description of the multistage duplex process of the BSTF production is given. The block diagrams of the production processes for soft and semi-rigid products are considered. The stages of production at which natural gas is consumed are highlighted. A high proportion of the cost of energy in the cost of finished products reaches 70 - 80% is given. The results of experimental-industrial tests of the main gas-using equipment - melting furnaces, gas burners, tunnel dryer are given. Two methods were used to determine specific energy consumption. The maximum of the values determined by different methods was chosen as the defining value of energy consumption. There is a non-stationary nature of the equipment. The results of the analysis are presented in the form of specific indicators of natural gas consumption per unit of finished product, and heat per 1 kg of evaporated moisture. Thus, the specific consumption of natural gas per 1 kg of BSTF, for the existing technology, is 4,8 standard cubic meter, and the release of 1 cubic meters basalto-bentonite plate - 300 standard cubic meter. The basic heat engineering principles are formulated, which will allow a multiple increase in the energy efficiency of heat technologies, among them - the reduction of losses through the structures of equipment; loss reduction with high-temperature combustion products; intensification of heat and mass transfer processes in equipment components and elimination of unorganized gas exchange of internal technological volumes.

References

1. Information on http://rotys.com/.

2. Джигирис Д.Д., Махова М.Ф., Основы производства базальтовых волокон и изделий, Теплоэнергетик, Москва, 2002, 416 с.

3. ДСТУ Б В.2.7-317:2016 Мати та шнури мінераловатні теплоізоляційні. Технічні умови. Національний стандарт України. Київ: ДП «УкрНДНЦ», 2017. 23 с.

4. ТУ У В.2.7-23.9-00292818-001:2012 Маты прошивные безобкладочные МТПБа.

5. СНиП 2.04.14-88*. Тепловая изоляция оборудования и трубопроводов. Госстрой России. М.: ЦИТП Госстроя СССР, 1998. 28 с.

6. Минерально-сырьевая база горных пород Украины для производства волокон. Аналитический обзор. В.И. Трефилов, М.Ф. Махова, Д.Д. Джигирис [и др.] Промышленность строительных материалов. Серия 6. Промышленность полимерных, мягких кровельных и теплоизоляционных строительных материалов. 1992, Выпуск 2. 88 с.

7. Полевой П.П. Теплообменные процессы при получении волокна раздувом минеральных нитей высокотемпературными газовыми потоками [Текст]. дисс. канд. техн. наук: 05.14.04. Полевой Петр Петрович. Киев, 1982. 193 с.

8. Татаринцева О.С. Изоляционные материалы из базальтовых волокон, полученных индукционным способом [Текст]. автореф. дисс. докт. техн. наук. Томск, 2006. 42 с.

9. Аблесимов Н.Е., Земцов А.Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. Москва, 2010. 400 с.

10. Information on https://www.calc.ru/dinamika-Gas.html
Published
2018-12-28
How to Cite
Kremnev, V., Shpilberg, L., Timoshchenko, A., Hylienko, O., & Timoshchenko, Y. (2018, December 28). Energy efficient of the production of the heat insulation based on the basalt super thin fibers. Ceramics: Science and Life, (№4(41), 21-28. https://doi.org/10.26909/csl.4.2018.3