Thermal and electrophysical properties of polymer composites based on silver and nickel alloys


Keywords:
epoxy polymer, alloy of silver and nickel, specific electric resistance, thermal conductivity

Abstract

It was obtained samples of epoxy polymer (EP) and composites based on EP and magnetosensitive silver and nickel alloy, which were formed under the action of an external magnetic field and without it and subsequent thermal cross-linking of the samples. It has been found that in composites formed under normal conditions in the absence of an external magnetic field, the particles of the filler are discretely distributed in the polymer matrix. The formation of a composite under the action of an external magnetic field leads to the formation of continuous channels from the particles of the alloy Ag/Ni in the continuous matrix EP. It has been established that discrete alloy particles do not significantly contribute to the resistivity and thermal conductivity of composites due to high intercontact electric and thermal resistance. This leads to the fact that the resistivity remains quite significant, and the coefficient of thermal conductivity is rather small for both pure of epoxy polymer and for a composite with a concentration of Ag/Ni filler up to 5 %. When the Ag/Ni concentration increases above 5 %, the particles of the ferromagnetic filler begin to contact each other. Subsequent application of the magnetic field leads to the formation of continuous conducting channels of the ferromagnetic particles of filler oriented along the lines of the magnetic field. The presence of continuous channels from the particles of the alloy Ag/Ni causes a significant decrease in the specific resistance and the growth of the thermal conductivity of the composites in the direction of orientation. There are grounds to consider the received materials as the modern composites with controlled anisotropy of electro- and thermal conductivity with the help of an external magnetic field.

References

1. Varga, Z., Filipcsei, G., Zrínyi, M. Smart composites with controlled anisotropy // Polymer. – 2005. – Vol. 45. – P. 7779 - 7787.

2. Takrori, F. M., Ayyad, A. Surface energy of metal alloy nanoparticles // Applied Surface Science. – 2017. – Vol. 401. – P. 65-68.

3. Jabbarreh, M.A. Size, shape and temperature dependent surface energy of binary alloy nanoparticles // Applied Surface Science. – 2017. – Vol. 426. – P. 1094-1099.

4. Srivastava, C., Chithra, S., Malviya, R.D., Sinha, S.K., Chattopadhyay, K. Size dependent microstructure for Ag–Ni nanoparticles // Acta Materialia. – 2011. – Vol. 59, № 16. – P. 6501-6509.

5. Yan, Sh., Sun, D., Tan, Ya., Xing, X. et. at. Synthesis and formation mechanism of Ag–Ni alloy nanoparticles at room temperature // Journal of Physics and Chemistry of Solids. – 2016. – Vol. 98. – P. 107-114.

6. Lee, Ch.Ch., Cheng, Ya-Yi., Chang, H. Yu., Chen, D.H. Synthesis and electromagnetic wave absorption property of Ni–Ag alloy nanoparticles // Journal of Alloys and Compounds. – 2009. – Vol. 480. – P. 674 - 680.

7. Santhi, K., Karthick, S.N., Kim, H.J. and at. Microstructure analysis of the ferromagnetic Ag–Ni system synthesized by pulsed electrodeposition // Applied Surface Science. – 2012. – Vol. 258. – № 7. – P. 3126 - 3132.

8. Ли, Х., Невилл, К. Справочное руководство по эпоксидным смолам. Пер. англ. Под ред. Н.В. Александрова. – М.: Энергия. – 1973. – 416 с.

9. Корсканов, В.В., Мамуня, Є.П., Карпова, І.Л. та ін. Тепло- та електропровідність нанонаповненого

епоксидного полімеру // Полім. журнал. – 2011. – Том 33, № 2. – С.107 – 110.

10. Корсканов, В.В., Карпова, І.Л., Рухайло, М.В. та ін. Калориметрический модуль для исследования теплофизических свойств композиционных материалов // Керамика: наука и жизнь. – 2016. – Т.32, № 3. – С. 5 - 15.
Published
2018-10-16
How to Cite
Duginov, V. E., Dolgoshey, V. B., & Korskanov, V. V. (2018, October 16). Thermal and electrophysical properties of polymer composites based on silver and nickel alloys. Ceramics: Science and Life, (3(40), 30-33. https://doi.org/10.26909/csl.3.2018.4