Kinetics of drying Na+ - lost form of bentonium pine
kinetics of drying, bentonite, clay, granules
Abstract
It is known that the thermal treatment of bentonite clay changes their physical and chemical properties. Experimentally established for the Paleocene bentonite of Voronezh anteclase, that the drying mode can significantly change some of the foundry and metallurgical properties of bentonite. The mineral composition was established by the RFA method, the identification was carried out, the quantitative content of the clay rock formation mineral and the components of impurities were determined, the degree of enrichment with montmorillonite. Results of an experimental research rinetics of drying granulated suspensions Na+- substituted form of bentonitic clay of the Cherkassy deposit are submitted. Influence on process of drying of temperature, speed of the drying agent, humidity of a material, the geometrical sizes of granules, their grouping and accommodation concerning a stream of the heat-carrier is shown. Observations have shown that with the growth of the initial moisture content of the material, the amount and size of the cracks increases. However, drying of natural bentonite clay, even with high humidity, does not cause cracking of granules. However, the high moisture content in the suspension leads to an extension of the drying period and increased energy consumption. The obtained results indicate that regardless of the direction of the flow of the drying agent relative to a single granule or a group of granules, the kinetic parameters of drying improve with the decrease in the diameter of the granules. The analysis of the data showed that the drying rate depends on the aerodynamic conditions in the granule placement zone. With lateral blasting of the weighbridge plane by the drying agent stream, the best results are obtained when single granules are placed across the flow. It can be seen that breaking the pelleting mode can lead to loss of drying performance and increased energy consumption.
References
2. Овчаренко Ф.Д. Гидрофильность глин и глинистых минералов. – Киев: Издательство Академии наук УССР, 1961. – 291 с.
3. Powder Diffraction File. International Centre for Diffraction Data. - Swartmore, Penselvania, USA. – 1977.
4. Brindlеy G.W. and Brown G. Crystal structures of clay minerals and their X-ray identification. – London.: Miner. soс., 1980. – 495 p.
5. Рентгенография основных типов породообразующих минералов (слоистые и каркасные силикаты) / Под ред. В.А. Франк- Каменецкого. – Л.: Недра, 1983.– 359 с.
6. Дериватограф системы Паулик Ф., Паулик Й., Эрдеи Л. Теоретические основы. Венгерский оптический завод. – Будапешт, 1974. – 146 с.
7. Михайлик В.А. Експериментальне дослідження кінетики сушіння ріпчастої цибулі / В.А. Михайлик, С.О. Хавін, І.А. Реус // Енергетика, економіка, технології, екологія. – 2006. – №2 (19). – С. 74 - 78.
8. Дриц В.А., Коссовская А.Г. Глинистые минералы: смектиты, смешанослойные образования. – М.: Наука, 1990. – 214 с.
9. Гинзбург А.С. Основы теории и техники сушки пищевых продуктов. – М.: Пищевая промышленность, 1973. – 528 с.
10. Снежкин Ю.Ф., Боряк Л.А., Хавин А.А. Энергосберегающие теплотехнологии производства пищевых порошков из вторичных пищевых ресурсов. – К.: Наукова думка, 2004. – 228 с.