Magnetoelectric nanocomposites with a polymeric matrix as a promising direction for the development of modern material science


  • S.O. Umerova Frantsevich Institute for Problems of Materials Science of NASU
  • A.V. Ragulya Frantsevich Institute for Problems of Materials Science of NASU
Keywords:
polymer nanocomposites, magnetoelectric effect, multiferroics, structure, piezoelectric effect

Abstract

The magnetoelectric (ME) effect is a appearing of the electrical polarization of a material in the presence of an applied magnetic field or the magnetization in the presence of an applied electric field and can be seen as the bridge between the electric and magnetic properties of matter. When a magnetic field is applied to the composite, strain in the magnetostrictive phase is induced and transmitted to the piezoelectric constituent causing a change in its electrical polarization. Similarly, the reverse effect can be observed: when an electric field is applied to the composite, strain is induced in the piezoelectric phase and transmitted to the magnetostrictive phase, leading to a change in the magnetization. Unlike the single-phase ME materials so far available at room temperature, the larger design flexibility of ME composites permits the design  of multifunctional properties in which the coupling  between the piezoelectric and magnetostrictive components produces an ME response several orders of magnitude higher than those in single-phase ME materials. Thus, composites can be used to generate an ME response from the combination of materials which themselves do not allow the ME effect. In turn, formation of magnetoelectric nanocomposites with a polymer matrix is an extremely relevant and interesting task of modern material science, which links the branches of fundamental and applied research. Moreover, using of nanosized functional particles allows significantly enhancing ME effect due to  increasing  of  contact  surface  area between magnetostrictive and piezoelectric phases. Discovered in 1970, the ferroelectric properties of the poly(vinylidene fluoride) nowadays allow the developing of an organic high-sensitivity devices of a new generation of various forms with pre-determined mechanical properties, flexibility, versatility, ease and low cost of production and even biocompatibility.

References

1. Eerenstein W. Multiferroic and magnetoelectric materials / W. Eerenstein, N.D. Mathur, J.F. Scott // Nature. – 2006. – Vol. 442, No. 7104. – P. 759.



2. Martins P. Polymer‐based magnetoelectric materials / P. Martins, S. Lanceros‐Méndez // Advanced Functional Materials. – 2013. – Vol. 23, No. 27. – P. 3371-3385.



3. Fiebig M. Revival of the magnetoelectric effect / M. Fiebig // Journal of Physics D: Applied Physics. – 2005. – Vol. 38, No. 8. – P. R123.



4. Ma J. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films / J. Ma, J. Hu, Z. Li, C.W. Nan //Advanced Materials. – 2011. – Vol. 23, No. 9. – P. 1062-1087.



5. Katsura H. Spin current and magnetoelectric effect in noncollinear magnets / H. Katsura, N. Nagaosa, A.V. Balatsky // Physical review letters. – 2005. – Vol. 95, No. 5. – P. 057205.



6. Chu Y.H. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic / Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, Q. Zhan //Nature materials. – 2008. – Vol. 7, No. 6. – P. 478.



7. Scott J.F. Applications of modern ferroelectrics / J.F. Scott // Science. – 2007. – Vol. 315, No. 5814. – P. 954-959.



8. Qin W. An organic approach for nanostructured multiferroics / W. Qin, B. Xu, S. Ren // Nanoscale. – 2015. – Vol. 7, No. 20. – P. 9122-9132.



9. Andrew J.S. Prospects for nanostructured multiferroic composite materials / J.S. Andrew, J.D. Starr, M.A.K. Budi // Scripta Materialia. – 2014. – Vol. 74. – P. 38-43.



10. Kulkarni A. Giant magnetoelectric effect at low frequencies in polymer-based thin film composites / A. Kulkarni, K. Meurisch, I. Teliban, R. Jahns, T. Strunskus, A. Piorra, F. Faupel // Applied Physics Letters. – 2014. – Vol. 104, No. 2. – P. 022904.



11. Fiebig M. The evolution of multiferroics / M. Fiebig, T. Lottermoser, D. Meier, M. Trassin // Nature Reviews Materials. – 2016. – Vol. 1. – P. 16046.



12. Martins P. Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe 2 O 4/P (VDF-TrFE) nanocomposites / P. Martins, R. Gonçalves, S. Lanceros-Mendez, A. Lasheras, J. Gutiérrez, J.M. Barandiarán // Applied Surface Science. – 2014. – Vol. 313. – P. 215-219.



13. Varghese J. Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications / J. Varghese, R.W. Whatmore, J.D. Holmes // Journal of Materials Chemistry C. – 2013. – Vol. 1, No. 15. – P. 2618-2638.



14. Kim P. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer / P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J.W. Perry // ACS nano. – 2009. – Vol. 3, No. 9. – P. 2581-2592.



15. Rodríguez C. High magnetostriction polymer-bonded Terfenol-D composites / C. Rodríguez, A. Barrio, I. Orue, J.L. Vilas, L.M. León, J.M. Barandiarán, M.F.G. Ruiz // Sensors and Actuators A: Physical. – 2008. – Vol. 142, No. 2. – P. 538-541.



16. Kalia S. Magnetic polymer nanocomposites for environmental and biomedical applications / S. Kalia, S. Kango, A. Kumar, Y. Haldorai, B. Kumari, R. Kumar // Colloid and Polymer Science. – 2014. – Vol. 292, No. 9. – P. 2025-2052.



17. Maceiras A. High-temperature polymer based magnetoelectric nanocomposites / A. Maceiras, P. Martins, R. Gonçalves, G. Botelho, E.V. Ramana,

S.K. Mendiratta, L.M. León // European Polymer Journal. – 2015. – Vol. 64. – P. 224-228.



18. Alnassar M. Magnetoelectric polymer nanocomposite for flexible electronics / M. Alnassar, A. Alfadhel, Y.P. Ivanov, J. Kosel // Journal of Applied Physics. – 2015. – Vol. 117, No. 17. – P. 17D711.



19. Zhang Q.M. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer / Q.M. Zhang, V. Bharti, X. Zhao // Science. – 1998. – Vol. 280, No. 5372. – P. 2101-2104.



20. Kepler R.G. Ferroelectric polymers / R.G. Kepler, R.A. Anderson // Advances in physics. – 1992. – Vol. 41 No. 1. – P. 1-57.



21. Кочервинский В.В. Сегнетоэлектрические свойства полимеров на основе винилиденфторида / В.В. Кочервинский // Успехи химии. – 1999. – Т. 68, №. 10. – С. 904-943.



22. Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers / T. Furukawa // Phase Transitions: A Multinational Journal. – 1989. – Vol. 18, No. 3-4. – P. 143-211.



23. Gomes J. Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly (vinylidene fluoride) / J. Gomes, J.S. Nunes, V. Sencadas, S. Lanceros-Méndez // Smart Materials and Structures. – 2010. – Vol. 19, No. 6. – P. 065010.



24. Katsouras I. The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride) / I. Katsouras, K. Asadi, M. Li, T.B. Van Driel, K.S. Kjaer, D. Zhao, M.M. Nielsen // Nature materials. – 2016. – Vol. 15, No. EPFL-ARTICLE-212796. – P. 78.



25. Kawai H. The piezoelectricity of poly (vinylidene fluoride) / H. Kawai // Japanese Journal of Applied Physics. – 1969. – Vol. 8, No. 7. – P. 975.



26. Hasegawa R. Crystal structures of three crystalline forms of poly (vinylidene fluoride) / R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro // Polymer Journal. – 1972. – Vol. 3, No. 5. – P. 600-610.



27. Tajitsu Y. Switching phenomena in vinylidene fluoride/trifluoroethylene copolymers near the curie point / Y. Tajitsu, T. Masuda, T. Furukawa // Japanese journal of applied physics. – 1987. – Vol. 26, No. 10R. – P. 1749.



27. Wu Y. Two-step polarization switching in ferroelectric polymers / Y. Wu, X. Li, A.M. Jonas, Z. Hu // Physical review letters. – 2015. – Vol. 115, No. 26. –P. 267601.
Published
2017-10-31
How to Cite
Umerova, S., & Ragulya, A. (2017, October 31). Magnetoelectric nanocomposites with a polymeric matrix as a promising direction for the development of modern material science. Ceramics: Science and Life, (3(36), 15-19. https://doi.org/10.26909/csl.3.2017.2