Rottenstone as a basis for obtaining geopolymer material

rottenstone, geopolymers, heat treatment


The possibility of obtaining perspective geopolymer materials for use in the building industry was shown. Geopolymer materials are used with such advantages as high strength, density, water resistance, heat and heat resistance, environmental friendliness, durability, and high corrosion resistance. The raw material is rottenstone, a rock with a high silica content, which is widespread in Ukraine. Rottenstone is characterized by a ratio of SiО2:Al2O3 equal to 16… 20, which provides a high strength of the final material. It was indicated that physico-chemical processes that take place during polymerization are similar to those that take place in thin pellicles of the released SiO2 gel, cements the particles, and thus promotes hardening. As a result of the treatment of raw materials with alkali solution at temperatures of 80-120 °С, a monolithic solid material of olive color with a density of 1200-1700 kg/m3, humidity of 30-45% was formed. Precipitations were observed on the surface of the material due to the presence of non-chemically bound sodium and potassium cations in the pores of the geopolymer. When dried, they diffuse to the surface of the geopolymer and are subjected to atmospheric carbonization. It was indicated that in order to obtain a high-strength geopolymer material, it is necessary to carry out final heat treatment at temperatures close to 100 °С. The behavior of geopolymer samples aged over time at room temperature during their heating was investigated. The samples of the material are melted due to the presence of Na2O×SiО2×8Н2O and Na2O×SiО2×5Н2O crystal hydrates, which melt at relatively low temperatures at 48°С and 72°С, respectively. The formation of building geopolymer materials should take into account this melting by placing it in molds was concluded. Indicators of moisture loss at a temperature of about 100°С depending on the heat treatment time were obtained.


1. Davidovits J. Geopolymer chemistry and applications // 3rd eddition. – France, Saint-Quentin: Institute Geopolymer, 2011. – 614 p.

2. Н.А. Ерошкина, М.О. Коровкин. Геополимерные строительные материалы на основе промышленных отходов. Пенза: ПГУАС, 2014. – 128 с

3. Корнеев В.И. Перспективы развития общестроительных вяжущих веществ. Геополимеры и их отличительные особенности / В.И. Корнеев, А.С. Брыков // Цемент и его применение. 2010. № 2. С. 51 - 55.

4. Глуховский В.Д. Вяжущие композиционные материалы контактного твердения / В.Д. Глуховский, Р.Ф. Рунова, С.Е. Максумов. - К: Вища школа, 1991. - 243 с.

5 Кривенко П.В. Щелочные алюмосиликатные полимеры / П.В. Кривенко., Ж.В. Скурчинская, О.А. Бродко, Г.В. Желудков // Материалы для строительных конструкций. 1СМВ'94: тез. докл. III междунар. науч. конф. - Днепропетровск, 1994. - С. 13

6 Эйне И.А., Хвастухин Ю.И. Кремнезит – новый энерго- и ресурсосберегающий строительный материал // Экотехнологии и ресурсосбережение, 2000, №5, С. 13 - 18

7. Костогриз К.П., Розвиток технології термічної обробки дисперсних матеріалів / Костогриз К.П., Хвастухін Ю.І., Орлик В.М., Собченко В.В., Максимук О.Б. // Энерготехнологии и ресурсосбережение. – 2019, № 4, С. 47 – 59.

8. Г.В. Куколев Химия кремния и физическая химия силикатов. – М.: Высшая школа, 1966 – 464 с.
How to Cite
Sobchenko, V., Zhaivoronok, V., & Sobchenko, H. (2020, October 12). Rottenstone as a basis for obtaining geopolymer material. Ceramics: Science and Life, (3(48), 18-22.