The use of materials based on Si3N4 in the composition of composites for the design of high-temperature thermoelectric generators


  • V.V. Tsygoda Frantsevich Institute for Problems of Materials Science of National Academy of Science of Ukraine, 3, Krzhyzhanovsky St., Kyiv, 03142, Ukraine http://orcid.org/0000-0001-6997-6384
  • V.Ya. Petrovskiy Frantsevich Institute for Problems of Materials Science of National Academy of Science of Ukraine, 3, Krzhyzhanovsky St., Kyiv, 03142, Ukraine http://orcid.org/0000-0002-5323-7824
Keywords:
binder thermal conductivity of silicon nitride, high-temperature electrical converters.

Abstract

The possibility of reducing the thermal conductivity of silicon nitride as a basis of high-temperature electrical converters was investigated in the thesis. Also, the values of thermoelectric figure of merit and efficiency of thermoelectric current generator for the case of refractory oxygen-free composites were simulated. During the study, the dependence between the m coefficient, which determines the maximum possible efficiency of the thermoelectric generator and the ZT thermoelectric figure of merit, was determined. It was shown that the coefficient of thermal conductivity of the studied materials ranges from 1,2 to 4·106 m2/s and is characterized by a negative temperature coefficient over the entire temperature range. It was found that the thermal conductivity of Si3N4-based materials varies from 2,1 to 5,1 W/(m·K) depending on the type of sintering activator. The use of Al2O3 as an activator makes it possible to obtain a 25% lower thermal conductivity value comparing to materials with the addition of MgO. For the first time, it was proved that currently it is not possible to achieve an efficiency of 0,5hT in Si3N4-based materials used as a composite basis for high-temperature thermoelectric generators development.

References

1. X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki and H. Misawa, Nat. Nanotechnol., 2018, №13, P. 953 – 958.

2. F.K. Shaikh and S. Zeadally, Renewable Sustainable Energy Rev., 2016, №55, P. 1041 – 1054.

3. A. Myers, R. Hodges and J.S. Jur, Energy Convers. Manage., 2017, №143, P. 218 – 226.

4. N.A. Pambudi, Renewable Sustainable Energy Rev., 2018, №81, P. 2893 – 2901.

5. M. Hamid Elsheikh, D.A. Shnawah, M.F. M. Sabri, S B.M. Said, M. Haji Hassan, M.B. Ali Bashir and M. Mohamad, Renewable Sustainable Energy Rev., 2014, №30, P. 337 – 355.

6. Y. Fukuzumi, K. Amaha, W. Kobayashi, H. Niwa and Y. Mortitomo, Energy Technol., 2018, 6, P. 1865 – 1870.

7. Sweta Bhansali. Thermoelectric properties of oxides and related materials. Doctoral thesis in Physics (Materials Sciences), Universitat Autonoma de Barcelona, 2016. 113 p.

8. Petr Levinsky. Synthesis, Characterization and Optimization of New Thermoelectric Materials. Materials. Université de Lorraine; Czech Technical University in Prague, 2018. 176 p.

9. Li, J. F., et. al. High-performance nanostructured thermoelectric materials. Npg Asia Materials, 2010. №2(4): P. 152 – 158.

10. Полежаев Ю.В., Фролов Г.А. Тепловое разрушение материалов. Киев: Из-во ИПМ НАНУ, 2005. − 288 с. ISBN 966-96446-1-5.

11. Шелемба И.С., Кузнецов А.Г., Бабин С.А. Оптоволоконные измерительные системы Ползуновский альманах, №3, Т. 2, 2009.

12. Clark D.E., Folz D.C., West J.K. Processing materials with microwave energy/ Materials Science and Engineering A287 (2000), P. 153 – 158.

13. Yasuoka M., Shirai T., Nisimura Y., Nagaoka T., Watari K. Development of an Efficient of Microwave Sintering Process Advances in Science and Technology Vol. 45 (2006), P. 602 – 609.

14. Анатычук Л.И., Прибыла А.В. Анизотропный термоелемент в режиме генерации тока и ЭДС. Технология и конструирование в электронной аппаратуре. №5, 2011. С.17 – 19.

15. Баранский П.И., Гайдар Г.П. Анизотропия термоэлектрических свойств многодолинных полупроводников кубической симметрии под влиянием внешних направленных воздействий. Термоэлектричество №1, 2014. С. 14 - 27,

16. Wu, N. Development and Processing of p-type Oxide Thermoelectric Materials. Department of Energy Conversion and Storage, Technical University of Denmark, 2014. 129 p.

17. Martin-Gonzalez, M., O. Caballero-Calero and P. Diaz-Chao Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable&Sustainable Energy Reviews, 2013. №24. Р. 288 – 305.

18. Tritt, T.M., Thermoelectric Phenomena, Materials, and Applications. Annual Review of Materials Research, Vol. 41, 2011. Р. 433 – 448.

19. Shakouri, A., Recent Developments in Semiconductor Thermoelectric Physics and Materials. Annual Review of Materials Research, Vol. 41, 2011. Р. 399 – 431.

20. Dresselhaus, M.S., at. al., Low dimensional thermoelectrics. Proceeding Ict’97-Xvi International Conference on Thermoelectrics, 1997. Р. 12 – 20.

21. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science 2 (2009) 559 – 588.

22. Хвесюк В.И., Останко Д.А., Скрябин А.С., Цыганков П.А., Челмодеев Р.И., Чирков А.Ю. Предельная эффективность термоэлектрического преобразования теплоты в высокотемпературных энергоустановках. Наука и Образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2016. №03. С. 81 – 105.

23. Харламов В.Ф. Термоэлектрическая добротность материалов, состоящих из частиц полупроводника или метала. ЖЭТФ. 2013. Т. 144, Вып. 1(7). С. 97 - 103.

24. Самсонов Г.В., Кислий П.С. Высокотемпературные неметаллические термопары и наконечники. – Наукова думка, 1965. – 175 с.

25. Petrovsky V.Ya., Rak Z.S. Densification, microstructure and properties of electroconductive Si3N4 – TaN composites. Part I: Densification and microstructure J. Eur. Ceram. Soc. – 2001. – 21. – Р. 219 – 235.

26. Petrovsky V. Electrical properties of multicomponent CMM in correlation with their microstructure. Ceramics International 34 (2008), Р. 1165 – 1171.

27. Филиппов Л.П. Измерение тепловых свойств твердых и жидких металлов при высоких температурах. М.: МГУ, 1967.

28. Филиппов П.И. Приложение теории теплопроводности к теплофизическим измерениям. – Новосибирск: Наука СО, 1973. – 62 с.

29. Зиновьев В.Е., Коршунов И.Г. Температуропроводность и теплопроводность переходных металлов при высоких температурах. Обзоры по теплофизическим свойствам веществ. М., 1978, №1. 16 c.

30. Ивлиев А.Д., Зиновьев В. Е.ПТЭ, 1973, №1, C. 101 – 104.

31. M.J. Laubitz, D.L. McElroy. Metrologia, Vol 7, №1, 1971, P. 1 – 15.

32. Ивлиев А.Д., Зиновьев В.Е. Измерение температуропроводности и теплоемкости методом температурных волн с ипользованием ОКТ и следящего амплитудно-фазового приемника. ТВТ, 1980, T. 16. C. 532 – 539.

33. Чиркин В.С., Теплофизические свойства материалов ядерной техники. М., Атомиздат, 1968, 484 с.

34. Таблицы физических величин. Справочник ред. И.К. Кикоин, М., Атомиздат, 1976, 1005 с.
Published
2020-07-12
How to Cite
Tsygoda, V., & Petrovskiy, V. (2020, July 12). The use of materials based on Si3N4 in the composition of composites for the design of high-temperature thermoelectric generators. Ceramics: Science and Life, (2(47), 7-14. https://doi.org/10.26909/csl.2.2020.1