Temperatural conductivity of diluted water solutions graphen and nanostructures of graphen nanoparticles


  • O.M. Fesenko Institute of physics of of NAS of Ukraine, av. Nauki 46, Kyiv, 03028, Ukraine
  • V.V. Korskanov Institute of physics of of NAS of Ukraine, av. Nauki 46, Kyiv, 03028, Ukraine http://orcid.org/0000-0001-8204-5728
  • V.B. Dolgoshey National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” http://orcid.org/0000-0002-0147-3534
  • E.S. Kifuk Institute of physics of of NAS of Ukraine, av. Nauki 46, Kyiv, 03028, Ukraine
  • P.P. Pogoreckiy Institute of physics of of NAS of Ukraine, av. Nauki 46, Kyiv, 03028, Ukraine

Abstract

The purpose of this work was to study the specific thermal conductivity of aqueous graphene dispersions and the diluted aqueous solution of nanostructures based on graphene and Au nanoparticles, as well as to determine the temperature and concentration dependences of the specific thermal conductivity of these aqueous dispersions.

The objects of study were aqueous dispersions of graphene and nanostructures based on graphene and Au nanoparticles. Graphene has characteristic dimensions of the order of 150 - 200 nm in the plane. The Au nanoparticles also have an average size of about 50 nm and a star-like shape. In dry nanocomposites, graphene is oriented parallel to the substrate plane, and nanostars are evenly distributed on the sample surface.

The specific volumetric thermal conductivity values of aqueous graphene dispersions and aqueous solutions of graphene-based nanoparticles and Au nanoparticles were obtained in the temperature range from 30оC to 60оC. A slight increase in the specific thermal conductivity was found with increasing temperature. The absolute values a/v of aqueous graphene dispersions are 1.6 times higher than in three-component systems. The concentration dependences of the thermal conductivity of the two systems studied are linear. It is determined that the values of the specific thermal conductivity of dry graphene nanofillers are 1,62 times higher than the thermal conductivity of a mixture of graphene and Au nanoparticles.

References

1. Naseem H, Murthy H. (2019) A simple thermal diffusivity measurement technique for polymers and particulate composites. International Journal of Heat and Mass Transfer 137: 968 – 978. https://doi.org/10.1016/j.ijheatmasstransfer.20

2. Carr EJ. (2019) Rear-surface integral method for calculating thermal diffusivity from laser flash experiments. Chemical Engineering Science 199:546 – 551. https://doi.org/10.1016/j.ces.2019.01.014

3. Addepalli S, Zhao Y, Roy R, Galhenege W, Colle M, Yu J, Ucur A. (2019) Non-destructive evaluation of localised heat damage occurring in carbon composites using thermography and thermal diffusivity measurement.Measurement 131: 706 - 713. https://doi.org/10.1016/j.measurement.2018.09.040

4. Soltaninejad S, Husin MS, Sadrolhosseini AR, Zamiri R, Zakaria A, Moksin MM, Gharibshahi E. (2013) Thermal diffusivity measurement of Au nanofluids of very low concentration by using photoflash technique. Measurement 46 (10): 4321 - 4327. https://doi.org/10.1016/j.measurement.2013.07.043

5. Dongmei B, Huanxin C, Shanjian L, Limei Sh. (2017) Measurement of thermal diffusivity/thermal contact resistance using laser photothermal method at cryogenic temperatures. Applied Thermal Engineering 111: 768 – 775.

https://doi.org/10.1016/j.applthermaleng.2016.07.188

6. Kalyanavalli V, Abilasha Ramadhas TK, Sastikumar D. (2019) Determination of Thermal Diffusivity of Basalt Fiber Reinforced Epoxy Composite using Infrared Thermography.Measurement 134:673–678. https://doi.org/10.1016/j.measurement.2018.11.004

7. Genna S, Ucciardello N. (2019) A thermographic technique for in-plane thermal diffusivity measurement of electroplated coatings. Optics and Laser Technology. 113: 338 – 344. https://doi.org/10.1016/j.measurement.2018.11.004

8. Giri L., Tuli S, Sharma M, , Bugnon Ph, Berger H, & Magrez A. (2014). Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Materials Letters 115:106–108.doi:10.1016/j.matlet.2013.10.042

9. Li Q, Takahashi K, Zhang X. (2019) Frequency-domain Raman method to measure thermal diffusivity of one-dimensional microfibers and nanowires. International Journal of Heat and Mass Transfer 134:539 – 546. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.057

10. Shahil К.М., Balandin A. (2012) Thermal properties of graphene and multilayer graphene: Application in thermal interfase materials // Solid State Communications.152: 1331-1340. https://doi.org/10.1016/j.ssc.2012.04.034

11. Chu K., Wang X., Li Y. et al (2018) Thermal properties of graphene/metal composites with aligned graphene. Materials and Design 140: 85–94. https://doi.org/10.1016/j.matdes.2017.11.048

12. Фесенко О.М., Корсканов В.В., Цебрієнко Т.В. , Будник О.П., Долгошей В.Б. (2019) Вплив наночастинок золота на теплопровідність водних розчинів графену // Кераміка: наука і життя, 45(4): 14 - 20. https://doi.org/10.26909/csl.4.2019.1

13. Kорсканов В.В., Карпова И.Л., Рухайло М.В. та ін. (2016) Калориметрический модуль для исследования теплофизических свойств композиционных материалов // Керамика: наука и жизнь 32 (3): 5 - 15.

14. Плотность золота, его теплоемкость и теплопроводность [Інтернет] [оновлено 2019 грудня 10; цитовано 2019 грудня 10]. Доступно: http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/plotnost-zolota-ego-teploemkost-i-teploprovodnost

15. Li Q., Ma W., Zhang X. (2016) Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. International Journal of Heat and Mass Transfer. 95: 956 – 963.
Published
2020-03-19
How to Cite
Fesenko, O., Korskanov, V., Dolgoshey, V., Kifuk, E., & Pogoreckiy, P. (2020, March 19). Temperatural conductivity of diluted water solutions graphen and nanostructures of graphen nanoparticles. Ceramics: Science and Life, (1(46), 24-28. https://doi.org/10.26909/csl.1.2020.4